Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells

نویسندگان

  • Ye Zhang
  • Hongmei Ren
  • Xi Lu
  • Duofen He
  • Yu Han
  • Hongyong Wang
  • Chunyu Zeng
  • Weibin Shi
چکیده

BACKGROUND Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. CONCLUSIONS Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the...

متن کامل

Dopamine Downregulation of Proximal Tubule AT

Systemic and/or locally produced angiotensin II stimulates salt and water reabsorption in the renal proximal tubule. In vivo, dopamine (DA) may serve as a counterregulatory hormone to angiotensin II’s acute actions on the proximal tubule. We examined whether dopamine modulates AT 1 receptor expression in cultured proximal tubule cells (RPTC) expressing DA 1 receptors. Dopamine decreased basal R...

متن کامل

Dopamine D4 receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression

Vascular smooth muscle cells (VSMCs) proliferation and migration, which are central in the development of vascular diseases, are regulated by numerous hormones and humoral factors. Activation of the insulin receptor stimulates VSMCs proliferation while dopamine receptors, via D1 and D3 receptors, inhibit the stimulatory effects of norepinephrine on VSMCs proliferation. We hypothesize that activ...

متن کامل

Dopamine-mediated inhibition of renal Na,K-ATPase is reduced by insulin.

Recently we have reported that rosiglitazone treatment of obese Zucker rats reduced plasma insulin and restored the ability of dopamine to inhibit Na,K-ATPase (NKA) in renal proximal tubules. The present study was performed to test the hypothesis that a chronic increase in levels of insulin causes a decrease in expression of the D1 receptor and its uncoupling from G proteins, which may account ...

متن کامل

Renal Dopamine System Paracrine Regulator of Sodium Homeostasis and Blood Pressure

All of the components of a complete dopamine system are present within the kidney, where dopamine acts as a paracrine substance in the control of sodium excretion. Dopamine receptors can be divided into D1-like (D1 and D5) receptors that stimulate adenylyl cyclase and D2-like (D2, D3, and D4) receptors that inhibit adenylyl cyclase. All 5 receptor subtypes are expressed in the kidney, albeit in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016